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The relation between the wave propagation and the free vibration in a travelling beam
with simple supports has been thoroughly investigated. The frequency equation of such
a beam has been derived using the phase-closure principle. Since the characters of the waves
change drastically as the axial speed is increased beyond a certain value, the phase-closure
principle has been applied di!erently in these two speed regimes. The justi"cations for some
approximate methods of obtaining the natural frequencies are also discussed. Lastly, the
non-linear normal modes are derived again using the phase-closure principle. The
computation of the forced response using the wave propagation approach is discussed in
Part II.

( 2000 Academic Press
1. INTRODUCTION

The connection between the vibration and the wave propagation in a continuous system
has been recognized long ago. It is well known that in a string, two waves, travelling in
opposite directions at the same speed, are re#ected at the boundaries to generate the normal
modes of vibration. The free vibration of an Euler}Bernoulli beam has also been studied
through the wave superposition method. A phase-closure principle has been derived [1],
that shows that the normal modes correspond to a phase change of an integer multiple of 2n
for the propagating as well as the evanescent waves, as they return to their starting point
after traversing to and fro along the beam. Although there is no advantage of calculating the
natural frequencies using this principle, the physical understanding of the motion of the
beam in its normal modes is enhanced.

If the continuous system is an axially moving slender member, like a band-saw,
a travelling threadline, a magnetic tape, etc., then the speed of the wave propagation does no
longer remain equal in the upstream and downstream directions. However, the
phase-closure principle still remains valid during the modal vibration of an axially moving
string [2]. Due to the dispersive nature of the medium, the wave propagation in an axially
moving beam is more complicated than that in a moving string. Consequently, only an
approximate, rather than an exact, result has been obtained for the natural frequencies of
such a beam [3].

It has been observed that even in the presence of non-linear terms, all the points of
a vibrating beam may oscillate having the same time period, which, however, is not a system
property and depends on the extent of motion. A `naturala frequency is associated with
such a time period and is known as the non-linear natural frequency. The con"gurations of
0022-460X/00/370277#14 $35.00/0 ( 2000 Academic Press
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the beam at these frequencies are called the `non-linear normal modesa. The non-linear
normal modes of a continuous system have been derived in various ways [4}9]. If the beam
travels with a speed close to the `critical speeda [10], the e!ects of non-linearities have to be
accounted for. A concept of `non-linear complex normal modea, similar to the non-linear
normal mode of an axially stationary beam, has been derived [11].

In this paper, both the linear and non-linear complex normal modes of a simply
supported travelling beam are re-examined in the light of harmonic wave propagation. This
methodology provides justi"cation for various approximate methods of calculating the
natural frequencies. The analysis adds to the physical understanding of the oscillatory
motion of the system, which is often missing in the traditional approach of solving
a di!erential equation with given boundary conditions.

2. LINEAR ANALYSIS

In this section, the nature of the waves associated with the modal vibration of a linear
travelling beam is "rst presented. The study is then extended to set up both the approximate
and exact frequency equations.

2.1. WAVE-PROPAGATION AND REFLECTION AT A BOUNDARY

The equation of motion for the transverse vibration of a travelling beam can be written
as [11]

oAC
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Lt2
#2c*

L2w*
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Lm2 D!¹*
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where w*(m, t) is the transverse displacement of the beam moving with an axial speed c* and
having an initial tension ¹*

0
. The geometric properties are given by A, the area of

cross-section and I
z
, the second moment of area of the cross-section about the neutral axis,

and the material characteristics by o, the mass density and E, the Young's modulus. The
spatial and temporal co-ordinates are denoted by m and t respectively.

The following non-dimensionalization scheme is then used: w"w*/(lc2), x"m/l,
q"(E/o)1@2ct/l, c"c*(E/o)~1@2/c, r2"I

z
/A, c"r/l and ¹

0
"¹*

0
/(EAc2), with l as the

distance between the two simple supports. In terms of the non-dimensional quantities, the
equation of motion is recast as
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To study the harmonic wave propagation, one substitutes

w(x, q)"e*uqe*kx where i"J!1, (3)

into equation (2) and obtains the following relation:

!u2!2ukc!(c2!¹
0
)k2#k4"0. (4)

Using Descartes' rule [12], it can be seen that the roots of this quartic equation belong to
one of the following categories:

(i) one pair of real roots (with one negative (k
1
, say) and the other positive (k

2
, say)) with

the other roots as complex conjugates (k
3

and k
4
, say),
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(ii) four real roots with one positive (k
2

say) and the other three negative (k
1
, k

3
and

k
4

say).
In what follows, for the sake of simplicity, the analysis is carried on with ¹

0
"0.

However, the nature of the wave propagation remains the same for any other value of ¹
0
.

For ¹
0
"0, the roots k

j
's ( j"1, 2, 3, 4) are obtained as

k
1
"c/2!Ju#c2/4, k

2
"c/2#Ju#c2/4,

k
3
"!c/2#i Ju!c2/4 and k

4
"!c/2!i Ju!c2/4. (5)

Thus, the response is given by
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e*k4x]e*uq. (6)

The wave numbers k
1

and k
2

correspond to the waves propagating along the downstream
and upstream directions respectively, and will be denoted by A

1
- and A

2
-waves. Their phase

velocities CP
1

and CP
2

di!er by
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!CP
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For c(2Ju, the other two waves, i.e., the A
3
- and A

4
-waves can be called `evanescent

wavesa, since their group velocities become imaginary (implying no propagation of energy)
as shown below:
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It should be noted that unlike in an axially stationary beam (c"0) [1], in the present case
the phases of the evanescent waves change as they move along the beam. However, for

c*2Ju, all the group velocities are real and both the A
3
- and A

4
-waves become

downstream propagating waves. The existence of such four propagating waves have been
reported in reference [13]. Since the wave propagation characteristics change drastically in
the two velocity regimes mentioned above, the phase-closure principle will be applied

separately for these cases, namely for 0(c(c
d

and c
d
(c((c

cr
)
1
"n with c

d
"2Ju.

But before applying the phase-closure principle, the re#ection of waves at the boundaries
with simple supports will be brie#y discussed.

2.1.1. Re-ection of waves for 0(c(c
d

If the downstream propagating wave, i.e., the A
1
-wave is the only wave impinging upon a

simply supported boundary (see Figure 1), then the re#ected waves will be both the up-
stream propagating (A

2
-) and evanescent (A

4
-) waves. The total displacement at a point is

w(x, q)"[A
1
e*k1x#A

2
e*k2x#A

4
e*k4x]e*uq,

which together with the boundary conditions

w(0, q)"
L2w
Lx2

(0, q)"0,



Figure 1. Re#ection of wave at a simple support.
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give the relations
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"0 (7)

and
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Using equations (5), (7) and (8) one obtains

A
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It can be seen that unlike in an axially stationary beam, the phase of the propagating wave
does not change by n after re#ection at the boundary. The change of phase is given by

e
R
"n#Atan~1

c/2Ju!c2/4

u!c/2Ju#c2/4
!tan~1

c/2Ju!c2/4

u#c/2Juc2/4B
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1

where

e
1
"tan~1C

2(c/2)2Ju2!(c2/4)2

u2#2(c2/4)2 D. (11)

2.1.2. Re-ection of waves for c
d
)c(n

In this speed regime, the re#ection can be studied by considering only the upstream
propagating A

2
-wave impinging on the boundary. Three waves will be generated, namely
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the A
1
-,A

3
- and A

4
-waves. From the boundary conditions one gets

(A
1
#A

3
#A

4
)"!A

2
.

Since the A
2
-wave is the only wave re#ected, the total phase change will be n. The individual

phase relationships between the A
1
-, A

3
- and A

4
-waves need not be considered here.

2.2. NATURAL FREQUENCIES OF A TRAVELLING BEAM USING PHASE-CLOSURE PRINCIPLE

In this section, the wave propagation theory is used to obtain the natural frequencies. In
what follows, the derivation will be carried out "rst by neglecting the evanescent waves and
again by retaining these if 0(c(c

d
. For c

d
)c(n, since there exists no evanescent wave,

only the exact natural frequencies are obtained.

2.2.1. Natural frequencies neglecting evanescent waves for 0(c(c
d

As explained in section 2.1, the evanescent waves are characterized by their spatial
exponential decay in the medium. Consequently, if the wave number of these waves is high,
then the decay will be substantial and it is justi"ed to neglect them altogether. In other
words, the approximation becomes more accurate while determining the higher order
frequencies. However, as can be seen from equation (5), the evanescent waves decay less with
increasing axial speed. Therefore, the approximate derivation of the natural frequencies
neglecting the evanescent waves is valid for low axial speeds.

With the above limitations, the change of phase, as the propagating waves travel once
around the span, is

Dh
phase

"2(n#e
1
)!Dk

1
D!Dk

2
D,

where the "rst term on the right-hand side (within the parenthesis) signi"es the change in the
phase due to re#ection at the boundaries and the other terms denote the phase changes as
the propagating waves move along the beam. According to the phase closure principle, for
the nth normal mode

2(n#e
1
)#2Ju#c2/4"2(n#1)n

or

e
1
#Ju#c2/4"nn. (12)

Equation (12) together with equation (11) can be used to determine the natural frequencies.
If, as a further approximation, e

1
is altogether neglected, the frequency equation becomes

u"n2n2!
c2

4
, (13)

as obtained by Nelson [3], although from an altogether di!erent approach.

2.2.2. Calculation of the natural frequencies including the evanescent waves for 0(c(c
d

In this section, the exact natural frequencies are derived considering the e!ects of the
evanescent waves. For an axially stationary beam, the natural frequencies are obtained by
considering the phase closure of either the propagating or the evanescent waves [1].
However, as already mentioned, in a travelling beam, the evanescent waves also contribute
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to the phase change during propagation. So, the phase closure principle has to be used by
considering both the propagating and the evanescent waves.

Considering both forms of wave, the re#ection at a simply supported boundary can be
analysed by considering the support at any point, say at x"0. The waves must satisfy the
relations
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Using these relations, one can see that if the A
1
- and A

3
-waves impinge on a boundary, the

resulting A
2
- and A

4
-waves are given by
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Similarly,
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Now, to use the phase-closure principle one needs to follow the waves until they reach their
starting point after travelling to and fro once along the beam. This is carried out as
explained below:

(i) Let A
1
- and A

3
-waves of respective strengths a

1
and a

3
start from x"0 and travel

towards x"1. If the strengths of the waves at x"1 become a@
1

and a@
3

respectively, one can
verify that
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1
"e*k1a

1
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3
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3

or in the matrix form
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a
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(ii) The A
1
- and A

3
-waves re#ect at the simply supported boundary placed at x"1 to

yield the A
2
- and A

2
-waves of strength a

2
and a

4
respectively. Since the phase change due

to the re#ection is independent of the location of the boundary, the transformation matrix is
again given by equation (16). Thus,
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(iii) The upstream propagating (i.e., the A
2
-wave) and evanescent (i.e., the A

4
-wave) waves

reach from x"1 to x"0 with strength a@
2

and a@
4

respectively. The transformation matrix
is
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(iv) The A
2
- and A

4
-waves get re#ected at x"0 and become A

1
- and A

3
-waves with

strengths aA
1

and aA
3
, respectively. The transformation matrix, is given by equation (17). So
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The condition for the beam to vibrate in one of its normal modes can be stated as
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1
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1
(18)

and
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3
. (19)

In terms of the transformation matrices, the phase-closure principle thus yields
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For non-trivial solutions of a
1

and a
3
, the following condition must be satis"ed:

det [[R
4
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3
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2
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1
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As shown in Appendix A, the above equation yields
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which is the usual frequency equation reported in the literature [14].

2.2.3. Calculation of the natural frequencies for c
d
)c(n

In this speed regime, three waves, namely the A
1
-, A

3
- and A

4
-waves propagate in the

downstream direction and the remaining A
2
-wave moves in the opposite direction. When

a simply supported boundary is placed at a point, say x"0, the four waves satisfy the
following relations:
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If an A
2
-wave hits upon the boundary, the resulting A

1
-, A

3
- and A

4
-waves are obtained

from the above two equations. But since the number of unknowns exceeds that of the
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equations, the strengths of the waves cannot be calculated individually. However, their
relative strengths A

1
/A

4
and A

3
/A

4
can be obtained as
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On the other hand, if the propagating A
1
-, A

3
- and A

4
-waves get re#ected from the

boundary, the resulting A
2
-wave can be obtained from the following relation:

A
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4
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It is to be pointed out that this motion is over-constrained. The waves must also satisfy the
following equation due to the disappearance of the bending moment at the simply
supported boundaries:
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To get the normal modes, the propagation of the waves are to be followed as described
below:

(i) Let an A
2
-wave of strength a

2
be re#ected from the boundary placed at x"0. Three

waves, namely, the A
1
-, A

3
- and A

4
-waves, are generated. The strengths of these waves

cannot be determined uniquely, but the relative strengths a
1
/a

4
and a

3
/a

4
can be obtained

in the following matrix form:
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(ii) The above A
1
-, A

3
- and A

4
-waves of respective strengths a

1
, a

3
and a

4
start travelling

from x"0 and reach x"1 with strengths a@
1
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3
and a@

4
respectively. It is seen that
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4
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Since only the values of the relative strengths a
1
/a

4
and a

3
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4
are known at x"0, the

corresponding values at x"1 are obtained as
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(iii) The propagating A
1
-, A

3
- and A

4
-waves are re#ected from x"1 and produce an

A
2
-wave of strength a@

2
. As equations (24) and (25) are to be satis"ed at the boundary, one

gets the following relation in terms of the relative strengths:
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(iv) Finally, the A
2
-wave of strength a@

2
reaches the point x"0 with strength aA

2
. Thus

aA
2
"e~*k2a@

2
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from which the following transformation matrix is constructed:

G
aA
2
/a

4
1 H"C

e~*(k2~k4 ) 0

0 1DG
a@
2
/a@

4
1 H"[R

4
]G
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2
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4
1 H.

According to the phase-closure principle

aA
2
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2
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aA
2
/a

4
"a

2
/a

4
.

In terms of the transformation matrices, the above requirement is equivalent to

[[R
4
][R

3
][R

2
][R

1
]!I]G

a
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4
1 H"0.

For non-trivial solutions

det [[R
4
][R

3
][R

2
][R

1
]![I]]"0. (26)

One can easily verify, following the results given in Appendix A, that equation (26) gives the
same result as equation (22).

3. NON-LINEAR ANALYSIS

In this section, the non-linear complex normal modes are derived using the phase-closure
principle. The non-linear normal modes are de"ned as the con"guration of the non-linear
system which oscillates periodically in such a way that all the points reach the extremum
positions simultaneously. All the points also cross their equilibrium positions at the same
instant. Since the points of a travelling beam do not reach their equilibrium positions
simultaneously, the non-linear normal modes of such a system are de"ned in a little di!erent
manner and are called the non-linear complex normal modes [11]. The non-linear equation
of motion for the transverse vibration of a travelling beam without initial tension can be
written in the following non-dimensional form [11]:

L2w
Lq2

#2c
L2w
LxLq

#c2
L2w

Lx2
#

L4w
Lx4

"e C P
1

0
A
Lw

LxB
2
dxD

L2w
Lx2

, (27)

where e("c2/2) is a small parameter, i.e., e@1. In what follows, the non-linear normal mode
is "rst derived by making c"0, i.e., for a stationary beam and then for a travelling beam
(i.e., cO0).

3.1. NON-LINEAR NORMAL MODE FOR A STATIONARY BEAM

For a stationary beam, the equation of motion is

L2w
Lq2

#

L4w

Lx4
"e CP

1

0
A
Lw

LxB
2
dxD

L2w
Lx2

. (28)
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To derive the non-linear normal modes, i.e., the shape of the beam which vibrates at a single
frequency u, one assumes

w (x, q)"at(x)cos uq, (29)

where t (x) and u both depend on a. Putting equation (29) into equation (28) and neglecting
the higher frequencies the following equation is obtained:

A!u2t#

L4t
Lx4Ba cosuq"

3

4
ea3CP

1

0
A
Lt
LxB

2
dxD

L2t
Lx2

cosuq. (30)

For a normal mode to exist, t(x) is such that the phase of any wave should change by an
integral multiple of 2n by travelling once to and fro along the beam. In the absence of
non-linearity (i.e., with e"0) the phase closure occurs when u"ul

n
and t"/

n
, where

ul
n

and /
n

are the linear natural frequency and the mode shape respectively. In general, in
the presence of the non-linear term, di!erent linear modes are simultaneously excited.
Hence, the normal mode corresponds to the frequency at which the phases of the waves
corresponding to all the linear modes are closed simultaneously. Thus, to get the normal
oscillation, one has to search for such a frequency. To this end, the following observation
from the linear analysis is important.

For the free vibration at any linear mode, say the nth mode, one can write

/
n
(x)"A

1
e~*kx#A

2
e*kx#A

3
e~kx#A

4
ekx,

where the wave number k"Jul
n

and the coe$cients A
1
, A

2
, A

3
and A

4
bear a constant

ratio amongst each other. Thus, four (two propagating and two evanescent) waves of
de"nite wave numbers travel once across the beam in such a way that the phase of each
wave gets closed after a time interval 2n/ul

n
. However, for a frequency di!erent from ul

n
, say

X, the same waves can be closed as they traverse once across the beam only by applying
a suitable external force given by

f
n
"[(ul

n
)2!X2]/

n
(x) cos Xq. (31)

With the above forcing, the wave numbers and the relative strengths of the constituent
waves do not change, but the phase velocity of each wave is changed to

CP@"
X

k
"

ul
n

k
)
X

ul
n

"CP]
ul

n
X

,

where CP is the phase-velocity of the wave propagating in the nth normal mode and having
the wave number k.

Now returning to the non-linear case, by assuming weak non-linearity one can write

(u)2"(ul
n
)2#O(e) (32)

and

at"

=
+

m/1

a
m
/
m
, (33)

where a
n
"a and a

m
"O(e) for mOn.
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It can be said that the force arising out of the non-linear term (i.e., the right-hand side of
equation (30)) is just suitable for simultaneous application of the phase closure for all the
waves participating in various linear modes. Keeping in view equation (31) for a linear
normal mode and replacing /

n
(x) by at(x) and X by u (see equation (29)) one can write

=
+

m/1

[(ul
m
)2!u2]a

m
/

m
"

3

4
ea3CP

1

0
A
Lt
LxB

2
dxD

L2t
Lx2

. (34)

Applying equations (32)} (34) together with the orthogonality relationships among the
linear modes i.e. :1

0
/
n
/
m

dx"0 for mOn, one gets the following result upto the term o (e):

u2"(ul
n
)2!

3

4
a2e

( :1
0
/

n
(d2/

n
/dx2) dx) ( :1

0
( d/

n
/dx )2dx)

:1
0
/2
n
dx

, (35)

a
m
"

3

4
a3e

( :1
0
/

m
(d2/

n
/dx2) dx) ( :1

0
(d/

n
/dx )2dx)

[(ul
m
)2!(ul

n
)2]:1

0
/2

m
dx

. (36)

The above results are in conformity with those obtained by a perturbation analysis [8]. For
a simply supported beam one eventually gets a

m
"0.

3.2. NON-LINEAR NORMAL MODES FOR A TRAVELLING BEAM

The linear normal modes of a travelling beam di!er from those of a stationary one by the
fact that in case of the former, the phase di!erence between the displacement and velocity at
any point depends on its axial co-ordinate x. This implies the importance of considering
both the displacement and the velocity of any point during the modal response of
a travelling beam. This fact is taken into account by treating the displacement and velocity
as two independent quantities. This can be done by casting the equation of motion in the
following usual state-space form applicable for a gyroscopic system [15]:

A
L=
Lq

#B="N, (37)

where

A"C
I 0

0 KD, B"C
G K

!K 0D, ="G
w
1

w
2
H, N"GAP

1

0
A
Lw

2
Lx B

2
dxB

L2w
2

Lx2
, 0H

T
,

with K,c2L2/Lx2#L4/Lx4, G,2c(L/Lx), w
1
"Lw/Lq, w

2
"w and I as the identity

operator.
As in the axially stationary beam, the phases of the waves corresponding to all the linear

normal modes get closed during vibration in any of the non-linear normal modes.
Assuming,

=(x, q)"
a

2
W

n
(x)e*uq#

a6
2
WM

n
(x) e~*uq, (38)
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where the bar at the top denotes the complex conjugate, the following equation is satis"ed
during the modal vibration:

Aiu
a

2
AW

n
#

a

2
BW

nBe*uq!eN
1
e*uq"0. (39)

where

N
1
"G

a2a6
8 A2

d2t
n

dx2 P
1

0

dt
n

dx

dtM
n

dx
dx#

d2tM
n

dx2 P
1

0
A
dt

n
dx B

2
dxB, 0H

T
.

From the linear analysis, it is observed that to close the phase of waves associated with
U

n
and UM

n
in time 2n/X, the required forces are

M f N"i (X!ul
n
)AU

n
e*Xq

and

M f N"!i (X#ul
n
)AUM

n
e*Xq,

respectively, where

U
n
"G

iul
n
/
n

/
n
H

with /
n

and ul
n

as the nth linear mode shape and the corresponding natural frequency
respectively. As the force due to the non-linearity closes the phases of the waves of all the
linear modes simultaneously, one can write

eN
1
"

=
+

m/1

i (ul
m
!u)

a
m
2

AU
m
!

=
+

m/1

i (ul
m
#u)

b
m
2

AUM
m
. (40)

As in the previous section, for weak non-linearity, one assumes

u"ul
n
#O (e) (41)

and

aW"

=
+

m/1

a
m
U

m
#

=
+

m/1

b
m
UM

m
, (42)

where a
n
"a, a

m
"O(e) for mOn and b

m
"O(e) for all m. Combining equations (40)}(42)

and the orthogonality relations given by

P
1

0

UT
m
AU

n
dx"0 for all m and n

and

P
1

0

UM T
m
AU

n
dx"0 for all mOn,
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one gets the following results, valid upto o(e):

u"ul
n
#

2e
ai

:1
0
UM T

n
Nl

1
dx

:1
0
UM T

n
AU

n
dx

,

a
m
"

2e
i

:1
0
UM T

m
Nl

1
dx

(ul
n
!ul

m
) :1

0
UM T

m
AU

m
dx

, mOn

and

b
m
"

2e
i

:1
0
UT

m
Nl

1
dx

(ul
n
#ul

m
) :1

0
UM T

m
AU

m
dx

, m"1, 2, 3,2

where Nl
1

is the vector N
1

with t
n
changed to /

n
. It can be veri"ed, by expanding U

j
's and

Nl
1

that the above results are identical to those obtained by a perturbation analysis [11].

4. CONCLUSIONS

The phase-closure principle has been used to derive the &natural' frequencies of
a travelling beam, "rst ignoring and then considering the e!ects of non-linearities.
Justi"cations of some approximate methods of calculating the linear natural frequencies
have been discussed. The wave-propagation principle, though does not yield any new result,
enhances the physical understanding of the oscillatory behaviour of a continuous system.
The knowledge of the wave propagation has been further used, in the next part of this paper,
to obtain the forced response of the beam.
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APPENDIX A: PROOF OF THE IDENTITY OF EQUATIONS (21) AND (22)

The identity can be easily proved by "rst noting the following fact [16]. For a block
matrix

[M]"C
[M

1
] [M

2
]

[M
3
] [M

4
]D,

det[M]"det[M
1
]det[M

4
]det(I![M

4
]~1[M

3
][M

1
]~1[M

2
]).

Assuming the members of matrix [M] as

[M
1
]"C

e*k2 e*k4

k2
2
e*k2 k2

4
e*k4D, [M

2
]"C

e*k1 e*k3

k2
1
e*k1 k2

3
e*k3D,

[M
3
]"C

1 1

k2
2

k2
4
D, [M

4
]"C

1 1

k2
1

k2
3
D,

and performing a few row operations, one can easily verify that equation (22) turns out to be
identical with the following:

det[M]"0.

Further, it can also be noticed that [R
4
][R

3
][R

2
][R

2
]"I![M

4
]~1[M

3
][M

1
]~1[M

2
],

where [R
j
]'s are those appearing in equation (21). Thus, det[M]"0 also implies

equation (22).
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